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Abstract. The surIsce modes of a sphere coupled to a semi-infinite medium are 
studied. W e  obtain a relationship which describes the dependence of frequmcy on 
the distance betw- the sphere and the semi-infinite medium. Our d t s  reduce to 
previously reported results in the limit of a very large separation between the sphere 
and the semi-infinite medium. Two surface modes for each order n are shown to exist. 
The theay is applied to three ewes: fust, a metallic sphere in vacuum couplea to a 
semi-infinite metal of the same material; second, a metallic sphem embedded into a 
semi-infink metal bounded by vacuum; third, a spherical cavity inside a semi-infmte 
metal bounded by vacuum 

1. Introduction 

Over the past two decades, much effort has been directed towards understanding 
the properties of surface modes in various configurations of samples. For example, 
several aspects of surface excitations have been reviewed by Agranovich and Mills 
(1982), Agranovich and Loudon (1984) and Cottam and Tilley (1989). In addition 
to surface excitations propagating along planar interfaces of semi-infinite media, thin 
films, bilayers and superlattices, there is also interest in surface excitations propagating 
along rough surfaces and curved surfaces, for example spherical crystals (Ruppin and 
Englman 1970). In this paper, we shall study the properties of surface modes of a 
sphere coupled to a semi-infinite medium (hereafter to be referred to as scsm). Earlier 
studies of this geometry include the work of Rendell e2 a1 (1978), Aravind and Metiu 
(1983), Ruppin (1983) and Takamori et a1 (1987). We embark on this study for several 
reasons-the first being the need to improve on what has been known from the earlier 
studies mentioned previously. In the earlier studies on this geometry, the approach 
was based on obtaining recursion relations which could only be solved by numerical 
truncation. In this paper we obtain an expression that relates the frequency of surface 
modes of an S C S ~  system to the distance between the sphere and the interface of 
the semi-infinite medium, and we show that there are two surface modes for each 
order n. Second, the geometry of the SCSIM system is important since it models 
several systems of practical interest, and the basic understanding of this model is of 
technological interest. Some systems that can be modelled by the ScSm geometry are 
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small particles coupled to  tunnel junctions (Rendell et a /  1978), molecules adsorbed on 
a surface in surface enhanced Raman scattering (Fleischmann et  a/ 1974, Udagawa et a1 
1981, Aravind et a1 1983, Otto 1984, Moskovits 1985, Takamori et a /  1987), embedded 
atom studies for granular Ag and Au films (Cohen et a/ 1973) and particle surface 
interactions which are the basis of many of the modern techniques of spectroscopy 
(Otto 1984). The experimental tools that  can be used to study the SCSIM geometry 
include Raman scattering, as mentioned earlier, infrared spectroscopy (Johnson e l  
a1 1974), and the new non-contact stylus microscopies such as scanning tunnelling 
microscopy (STM) (see, for example, Binnig and Rohrer 1984) and scanning near-field 
optical microscopy (SNOM) (see, for example, Fischer and Pohl (1989)). 

The plan of this paper is as follows. In section 2, we obtain the electric potentials 
in various regions of the SCSlM system by solving Laplace’s equation in bispherical 
coordinates. Application of boundary conditions enables us to obtain a result that  
relates the frequency of the surface modes of an SCSIM system to the distance between 
the sphere and the interface of the semi-infinite medium. Section 3 is devoted to  
numerical results and discussion, and we apply the theory developed in section 2 
to three cases of practical interest. First, we consider a metallic sphere coupled to a 
metal of the same material occupying a semi-infinite medium; second, a metallic sphere 
embedded into a semi-infinite metal bounded by vacuum; and third, a spherical cavity 
inside a semi-infinite metal bounded by vacuum. Concluding remarks are made in 
section 4. 

2. The frequency-distance relation for an SCSIM system 

The geometry of the SCSIM system is illustrated in figure 1. A sphere of radius R 
with a dielectric function f ,  occupies region I which is embedded in region I1 with a 
dielectric function f2, and region I11 (z < 0) has a dielectric function fg. Depending on 
which of the dielectric functions is frequency-dependent (active medium) and which 
is frequency independent (inactive medium), there are several possible applications of 
the SCsm geometry, and we shall consider three cases illustrated in figures 2( U )  to (c).  
In figure 2 ( a ) ,  a metallic sphere in vacuum is coupled to a metal of the same material 
occupying a semi-infinite medium, while in figure 2(b) a metallic sphere embedded 
into a semi-infinite metal bounded by vacuum is considered and finally in figure 2(c) 
a spherical cavity inside a semi-infinite metal bounded by vacuum is illustrated. 

The following notation for dielectric functions is used. 

for active medium 
for inactive medium 

where i = 1,2 ,3  and for metals, the dielectric function of the form 

W2. 
f i ( W )  = 1 - -E 

U2 

is used, with wpi representing the plasma frequency. 
For the SCSIM system, it is convenient to use the bispherical coordinate system 

(q ,  cz, $) which is related to the rectangular coordinate system (2, y, z) by (see, for 
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Figure 1. The geometry of a sphere coupled to a semi-infinite medium showing 
regions I, I1 and III with dielectric functions CI,CS and 63. Bispherical coordinates 
(q,m,+) are used to study the system, and J. = tan-l(y/=) where the y-axis is into 
the page plane. All otha  symbols are defined in the text. 

(a )  (b) ( c )  

Figure 2. (a )  A metallic sphere in vacuum coupled to a semi-infinite metal of the 
same material. ( b )  A metallic sphere embedded into a semi-infinite metal bounded 
by vacuum. (c) A spherical cavity inside a semi-infinite metal bounded by vacuum. 

example, Moon and Spencer (1988)) 

a sin a cos $ 
cosh q - cos m 

I =  

asin a sin 1,6 
’= coshq-cosa  

a sin hq 
coshq-cwm 

z =  

(3) 

(4) 

(5) 
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where 

a = (D2 - R2)1/2 

D = a coth qo. 

The surface modes we are considering satisfy Laplace's equation. 

v24i = 0 (8) 

where i = 1,2,3 for the solutions in the three regions I, II and 111. Equation (8) is 
valid for the surface modes considered in this paper, and is solved in the non-retarded 
limit. The solutions are 

where P,(cosa) are Legendre polynomials. Applying boundary conditions in bispher- 
ical coordinates at r) = qo and r) = 0, we have 

Using equations (12) to (15) and~equating coefficients of the Legendre polynomials 
of order n, and after some algebra, a relation giving the frequency dependence on 
distance D is obtained . 

[c2 - cd[cz - cl]e-(zn+l)~o t [c2 + cJ[c2f (n ,  qo) - cl] = o (16) 

where 

1 + (2n + 1) coth qo 
f(n"o)= 1-(2n+1)cothqo'  

Equation (16) is the main result of this paper, and it describes the relation between 
frequency of surface modes of a SCSIM system and the distance D between the sphere 



Surface modes of a sphere 7861 

of radius R and the interface of the semi-infinite medium, noting that the parameter 
qo is given by 

and 

s = D/R.  (19) 

It is of interest to discuss the following three limiting cases of our main result given in 
equation (16). First, let us consider the limit when the distance between the sphere 
and the semi-infinite medium gets very large. It can he noted that as D/R -+ 00, 

cothqo -f 1 qo + 00 (20) 

and hence the first term in equation (16) becomes negligible, and the second term 
implies, either 

or 

n + l  

where we have used 

Equation (21) can be recognized as the condition for the existence of surface modes 
along the semi-infinite medium and region I1 interface (see, for example, Cottam and 
Tilley (1989)), while equation (22) can be recognized as the condition for the existence 
ofsurface modes for an isolated sphere (see, for example, Ruppin and Englman (1970)). 
Thus the expression that has been obtained in equation (16) correctly reproduces the 
expected results in the limit of large DIR. 

Second, our result in equation (16) also explains the behaviour in the low separa- 
tion limit as D / R  + 1, that is the small D limit. This limit is of practical interest as 
in, for example, the SNOM experiments discussed by Fischer and Pohl (1989), where 
small protrusions over a gold film were illuminated by a AeNe laser and the scattered 
intensity was measured. These authors observed that there were narrow resonances 
which were dependent on the distance between the sphere and the gold film. These 
resonances could correspond to the surface modes predicted by our equation (16). 

Third, consider the limit when f l  + 00 and c2 = 1. In this limit equation (16) 
reduces to 

which corresponds to the case of a semi-infinite medium bounded by vacuum and a 
small sphere of an infinite dielectric constant. 
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3. Numerical results and discussion 

In this section we present the numerical results by applying the theory developed in 
section 2 to three cases of practical interest. 

9.1. Case (a): cl(w) = c3(w) and c, = 1.0 

Consider the case illustrated in figure Z(4) in which regions I and 111 are occupied by an 
active medium with the same dielectric function, and region 11 is occupied by vacuum. 
Typical values for the plasma frequency of the metals used are wpl = wp3 = 10 eV. 
Equation (16) is solved numerically and the ratio of the dielectric functions, cl(w)/cZ, 
is plotted against D/R in figure 3. The results for the SCSM system show that there 
are two surface modes, with the lower mode having values cl(w)/cz of -2.75, - 1.70 and 
-1.39 for n = 1,2,3 respectively when D/R = 3.0. The values for an isolated sphere 
using equation (22) give cl(w)/cz values of -2, - 4  and - 3  for n = 1,2,3 respectively. 
These results show that even at D/R = 3.0, the lower mode already shows an isolated 
sphere behaviour. The effects of coupling between the sphere and the semi-infinite 
medium are strong as D/R * 1, where frequency changes drastically. The upper 
mode shows that at D/R = 3.0 the ratio cl(w)/ez = -0.74,-0.87 and -0.95 for 
n = 1,2,3 respectively, while the uncoupled semi-infinite plane has surface modes at 
e1(w)/cz = -1. 

-za O.Oi ,___________.._.I_________________ . .  . 

4.0 ’ 

s 
’= -6.0 

-8.0 

~~ ~~ ~ ~. 
2.00 3 .00 

-lo.ol~w 

DR 

Figure 3. The ratio of dielectric functions c l ( w ) / c z  against reduced distance DIR. 
Full -vel broken CUM and paints comspond to R = 1,2,3, respectively. 

In figure 4, the reduced frequency w/wp is plotted against D/R. Two surface 
modes are found for each order n, with the lower branch increasing with increasing 
D/R and having values of w/wp as 0.52, 0.61 and 0.65 for n = 1,2,3 respectively 
when D/R = 3.0 and corresponding values for the upper mode are 0.76, 0.73 and 
0.72. These values can be explained by noting that at large distances, the sphere 
and the semi-infinite medium become uncoupled and isolated sphere frequencies are m, and for n = 1,2,3 respectively using the following equation, which 
is obtained by using (2) and (22). 
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0 2  

0.0 
1 .XI 2.00 3.M 

O R  

Figure 4. Reduced Irequency w/wp is plotkd s p a k t  D/R lor a metallic sphere 
in vacuum coupled to a semi-infinite metal of the -e matnid. ,Full m v e ,  broken 
curve and points co-pond to n = 1,2,3, respectively. 

The upper mode decreases with increasing D/R,  to a limiting value of w/w, = 1/*. 
This can he explained by noting that from (2) and (21), the surface modes along the 
uncoupled semi-infinite medium satisfy 

w 1 _ -  
wp3 - " 

3.2, Case (b): cl(w) f ez(w) and c3 = 1.0 

In this case, as illustrated in figure 2 ( b ) ,  a sphere in region I is embedded in region 
I1 and these two regions are of active medium with diflerent dielectric functions and 
region 111 is occupied by vacuum. The results are illustrated by taking plasma fre- 
quencies as wpl = 5 eV and wpz = 10 eV. In figure 5 ,  a plot of w/w, against D / R  
shows that there are two branches of surface modes for each order n, with the lower 
branch increasing with increasing D / R  and having values of w/wp as 0.67, 0.70 and 
0.70 for n = 1,2 ,3  respectively when D / R  = 3.0 while the upper mode has the val- 
ues 0.89, 0.84 and 0.83 at the same distance. The interpretation of these values now 
corresponds to the following: the lower mode approaches the vacuum-plane interface 
frequencies while the upper mode approaches the isolated sphere frequencies obtained 
by using equations (2) and (22) to obtain 

which predicts values of wn/w of 0.87, 0.84 and 0.82 for n = 1,2,3 respectively, 
which agrees well with the numerical prediction of equation (16) at D / R  = 3.0. One 
observation that has been made for case (E) is that the mode associated with the 
isolated sphere is the upper mode, and that with the uncoupled plane interface is 
the lower mode, and this behaviour is different from that of case (a) as discussed in 
section 3.1. 

p .  
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Figure 5. Fkduced frequency w/wp is plotted against DIR for a metdlie sphere 
anbedded into a semi-infinite metal bounded by M". Full curve, brokn curve 
and point m v e  comrpond ton = 1,2,3, respectidy. 

1.0 , 1 

0.2 1 
0.0 1 .m 2.00 3.00 

D'X 

Figure 6. Reduced frequmcy w/wp ie plotted against VIR for II spherical cavity 
h i d e  a semi-infinite metal bounded by vacuum. Full -ye, broken curve and poine 
correspond t o n  = 1,2,3, respectively. 

3.3. Case (c): c1 = c3 = 1.0 and cz(w) for region I1 

Consider the case illustrated in figure 2(c), where a spherical inactive region consisting 
of a void of dielectric constant c1 in region I which is embedded in region 11 which 
is active with a dielectric function c2(w).  On the other side of the interface in region 
I11 is vacuum. In figure 6, a graph of w/wp  against D/R shows that there are two 
branches of surface modes, with the lower branch increasing with increasing D/R 
and having values of w / w p  as 0.65, 0.68 and 0.70 for n = 1,2,3 respectively when 
D/R = 3.0, while the upper mode has reduced frequencies of 0.86, 0.79 and 0.76 at 
the same distance and the respective values of n are 1, 2 and 3. The upper mode 
frequencies can be compared with those of an isolated void or bubble with frequencies 
given by (22) and hence 

(28) wpa -=r n ( l + e , ) + l  

which gives values of the reduced frequencies of m, 
respectively. This gives a good prediction of equation (16) at large D/R, 

and for n = 1,2,3 
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4. Conclusions 

The main result of this paper is equation (16), which describes the frequency variation 
with distance for surface modes of a sphere coupled to a semi-infinite medium. It has 
been shown that there are two surface modes for every order n, and these orders 
are the source of a large range of frequencies that would not have been present if 
the semi-infinite plane was alone, and observations of this effect have been made in 
surface enhanced Raman scattering (Fleischmann et a/ (1974), Udagawa et a2 (1981), 
Aravind et a/ (1983), Otto (1984), Moskovits (1985), Takamori el al (1987)) and SNOM 
experiments (Fischer and Pohl (1989)). Three limiting cases of practical interest 
have been discussed at the end of section 2. First, when the distance between the 
sphere and the semi-infinite medium becomes very large, equation (16) reduces to the 
limit of uncoupled modes along the semi-infinite medium and region 11 interface (see, 
for example, Cottam and Tilley (1989)), and surface modes for an isolated sphere 
(see, for example, Ruppin and Englman (1970)). Second, in the limit of small D / R ,  
strong effects of coupling between the sphere and the semi-infinite medium have been 
illustrated in figures 3 to 6. Third, the case of a sphere with an infinite dielectric 
constant bounded by vacuum over a semi-infinite medium has been considered in 
section 2. The model has also been applied to three cases of practical interest in 
section 3: first, a metallic sphere in vacuum coupled to a semi-infinite metal of the same 
material; second, a metallic sphere embedded into a semi-infinite metal bounded by 
vacuum; third, aspherical cavity inside asemi-infinite metal bounded by vacuum. The 
numerical results that have been presented in this paper show the intrinsic properties 
of surface modes in the S C S ~  system. Suitable experimental techniques for observing 
these surface modes include Raman scattering, absorption measurements, STM and 
SNOM as mentioned earlier. 
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